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 ملخص البحث

؛  (volatility) التقمبظاىرة ن بين السمات اليامة لمبيانات المالية التي حظيت باىتمام كبير ىو م
مقياس رقمي لممخاطر التي يواجييا المستثمرون الأفراد والمؤسسات المالية. ومن المعموم  حيث يعد

 ى التكتل في فتراتكثيرا ما تتغير بمرور الوقت وتميل إل (volatility) أن تقمبات البيانات المالية
(volatility clustering)  .   ،بحيث يتبع أي ارتفاع في معدل التذبذب ارتفاع في معدل التذبذب

.  .والتقمبات المنخفضة يتبعيا تقمبات منخفضة. ىذه الظاىرة تتماشى مع التقمبات المتأرجحة
( 2891عام ) Engleولقياس التقمبات تم اقتراح نماذج مختمفة لمسلاسل الزمنية ودراستيا. قدم 

( التي تفوقت عمى العديد من نماذج السلاسل الزمنية للانحدار الذاتي  ARCHنماذج )
والمتوسطات المتحركة  لأنيا تسمح لمتباينات الشرطية في بيانات السلاسل الزمنية أن تكون دالة 

 ددة من المشاىدات التاريخية السابقة.مح

لاحد اىم  اليومي العائد بيانات مع عدة توزيعات باستخدام QMLEتم في ىذه الدراسة مقارنو 
 تأثيرات دراسة تم كما. EGX3الأوسط وىو  الشرق في المالية الأوراق سوق في المؤشرات المالية

 .السمسمة ىذه مع العودة سلاسل في المشروطة بالفروق والتنبؤ النمذجة عمى المتطرفة القيم
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ABSTRACT 

 One of the significant features of financial data that has won much 

attention is the volatility; because it is a numerical measure of the risk 

faced by individual investors and financial institutions. It is well known 

that the volatility of financial data often varies over time and tends to 

cluster in periods, i.e., high volatility is usually followed by high volatility, 

and low volatility by low volatility. 

 

 The QML estimation procedure is illustrated with using daily return 

data for one stock in the Middle East Stock Exchange. The effects of 

outliers on modeling and forecasting the conditional variances  in return 

series are also studied with this series. 
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INTRODUCTION 

 The volatility of an asset or the volatility of the return of an asset 

plays an important role in managing risks in financial world. To measure 

the volatility, different time series models have been proposed and studied. 

Engle (1982) introduced the autoregressive conditional heteroscedasticity 

(ARCH) models. These models are superior to many conventional 

autoregressive-type and moving average-type time series models because 

they allow the conditional variances of the time series data to be a 

deterministic function of the past observations. Thereafter, a number of 

variations of ARCH models, such as the Generalized ARCH (GARCH), 

Exponential GARCH (EGARCH), Integrated GARCH (IGARCH), 

Fractionally Integrated GARCH (FIGARCH), Factor ARCH (FACTOR- 

ARCH), Threshold GARCH (TGARCH), etc, were proposed to deal with a 

variety of data such as interest rates, exchange rates, equity returns, 

Treasury Bills, option pricing. 

In this paper we provide an empirical study of GARCH models, namely 

GARCH (1,1) , using EGX 30 historical data and estimate the out of-

sample forecast power.We also examine the stylized facts of financial time 

series . 

(Franses, et al., 1999) examined the feature of  excess kurtosis in the 

estimated residuals from GARCH models , even when conditional t-

distributed errors is considered. They examined if this feature can be due to 

neglected additive outliers , where they focused on the out-of-sample 

forecasting properties of GARCH models for AO-corrected returns. 

They proposed a method to detect AOs in GARCH models, and to reduce 

the impact of the AOs on parameter estimates and forecasts. They  rewrote 

the GARCH model into the form of an ARMA model and took the same 

approach as (Chen, 1993) to handle additive outliers. They altered 

Bollerslev’s GARCH model by assuming the asset returns follow a normal 

distribution with a possibility of additive outliers. They found that models 

for AO-corrected data yielded substantial improvement over GARCH and 

GARCH-t models for the original returns, and that this improvement holds 

for various samples. They showed that the forecasting performance of a 

GARCH model can be improved substantially when the impact of AOs is 

reduced, and that the GARCH model for AO-corrected returns also beats 

the GARCH-t model.  
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The process by Francses and Ghijsels accounts only for additive outliers 

(Charles, et al., 2005) extended the Francses and Ghijsels additive outlier 

approach to robust estimation to include innovation outliers. They 

considered GARCH(1,1) process as did Francses and Ghijsels. Charles and 

Darne used the same iteration approach to recalculate robust estimates of 

the returns to get better estimates of the GARCH process. They  applied it 

to three daily stock market indexes and examined the effects of outliers on 

the diagnostics of normality. they applied the identification procedure of 

additive and innovative outliers in a GARCH model to three series 

Nasdaq100, Aex25, and Cac40.  

Definition [GARCH (1, 1)] 

In a GARCH (1,1), the variance (  
 ) is a function of an intercept ( ), a 

shock from the prior period ( ) and the variance from the last period ( ):  

   
          

   
 
    
  (1) 

Although volatility is not directly observable, it has some characteristics 

that are commonly seen in asset returns. These properties play an important 

role in the development of volatility models. Some of which are stated 

below: 

 Stylized fact 1:stationarity 

Time series of share prices pt are not stationary time series so we transform 

the original data by the log return. 

Let Pt, t= 0 ; … ; n, be a time series of prices of a financial asset, Instead of 

analyzing Pt, which often displays unit-root behavior and thus cannot be 

modeled as stationary, we often analyze log-returns on Pt, i.e. the series 

                     (
  
    

)     (  
       
    

) (2) 

    Stylized fact 2: leptokurtic distribution 

Financial time series often exhibit leptokurtosis, which means that the 

distribution of their returns is fat-tailed. The GARCH model sometimes 

fails to capture the fat-tail property of financial data. This has led to the use 

of non-normal distributions to better model the fat-tailed characteristic. 

Kurtosis is computed as: 
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equation (3) equals 3 for a normal distribution and above 3 for 

leptokurtosis, where the distribution is peaked relative to the normal 

distribution. 

    Stylized fact 3: Volatility clustering 

Large and small values in a log return series tend to occur in clusters. This 

indicates that there is dependence in the tails. (Mandelbrot, 1963) quoted 

“… large changes tend to be followed by large changes -of either sign- and 

small changes by small changes …”. This characteristic is called volatility 

clustering.  

The Empirical Study Data  

The natural frequency of data  for GARCH estimator is daily data.   

weekly or monthly data can be used , but that smoothes some of the garch-

iness out of the data. GARCH with intraday data can also be used , but this 

gets complicated.  There is seasonality of volatility throughout the day.  

The seasonality highly depends on the particular market where the trading 

happens, and possibly on the specific asset.  

In this empirical study Six years of daily returns for a major middle east 

financial markets EGX30  indicex  in the period between 1/1/2012 and 

19/1/2018 is used. In this study a comparison of QMLE with several fat 

tailed distributions for GARCH (1,1) with µ=0 process is performed in 

order to assess the performance of QMLE in estimating and forecasting the 

parameters and the volatility of the GARCH(1,1) model. 

The EGX 30 Index is a free-float capitalization weighted index of the 30 

most highly capitalized and liquid stocks traded on the Egyptian Exchange. 

EGX 30 constituents are reviewed and changed twice a year (end of 

January and end of July). The index was developed with a base level of 

1000 as of January 1st 1998 and previously named CASE 30 Index. 

 

Steps of Conducting the Empirical Study 

Exploratory Data Analysis 

In this stage the following steps are conducted: 

Step 1: Testing Stationarity 

Figure1 shows a plot of the daily closing price of EGX30. It is 

observed that the EGX 30 series has a trend, i.e. the mean is 

obviously non-constant over time. hence it is to be considered as a 
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non-stationary time series. This is typical for financial time series. 

such trends in financial time series are nearly impossible to 

predict, and difficult to characterize mathematically. Hence, it is 

difficult to perform statistical analysis on the prices or index 

values, which will be denoted by Pt  

based on the results of the skewness of the stocks, most of the 

returns seem to be skewed. Due to this, the estimation procedure 

of this study uses the Student-t distribution and the Generalized 

Error distribution and there skewed versions in the estimation 

with QMLE. 

  
Figure 1 plot of the daily closing price of the EGX 30 

 

In order to convert non-stationary series to stationary, differencing method 

can be used In financial time series, it is often that the series is transformed 

by logging and then the differencing is performed. This is because financial 

time series is usually exposed to exponential growth, and thus log 

transformation can smooth out "linearize" the series and differencing will 

help stabilize the variance of the time series. in statistical analysis of 

financial data, log returns rt is usually considered. 
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Figure 2 plot of the Log Return of EGX30 

 

The plot in Figure 2  shows some common features that are very typical for 

financial data. 

 Nearly uncorrelated log-returns with a mean close to zero. 

 Clusters of volatility, i.e. periods where log returns are either big or 

small 

 Some extreme spikes, i.e. outliers that correspond to very big or 

small returns 

 The return series is stationary so we can model the return series. 

Step 2: Testing Normality  

(Bollerslev, 1987) and (Nelson, 1991) addressed characteristic of excess 

kurtosis in financial time-series data and hence, a normal distribution does 

not correctly describe the data. It is also known that stock index returns 

exhibit negative skewness (GLOSTEN, et al., 1993). To test the data for 

normality, and see if the same properties are present in this thesis data, 

summary statistics table is examined and Q-Q plots of the return and a 

(Jarque, et al., 1987) test was performed. A normal distribution is 

symmetric/ mesokurtic, when it has a coefficient of kurtosis equal to 3. 

financial time series also often show tendencies to be leptokurtic 

 Summary Statistics 

In table 1the  mean is close to zero, as expected since daily data is used and 

there is no time for a return to occur. Also, the table presents skewness and 

kurtosis. The kurtosis is much larger than 3 which is the kurtosis of a 

standard normal, in other words all return series exhibit fat tails. Notable, 
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the skewness is negative for five series which is a common characteristic of 

financial time series.  

Table 1 Summary Statistics for EGX30 

 
n mean sd min max range skew kurtosis 

EGX 30 1315 1.06E-03 0.0157691 -0.108647 0.0780619 0.1867085 -0.087023 4.793113 

 

 Quantile-Quantile plot (Q-Q)  

normal Quantile-Quantile plots serve for verifying the (Gaussian) 

distributional assumption. It can also be used to test if data follows other 

theoretical distributions. If the data follows the theoretical distribution, then 

the points in the Q-Q Plot lie on a straight line.  

 
Figure 3 Q-Q  plot of the Log Returns of EGX30 

 

Q-Q plots shows clearly that even the fitted normal distribution does not 

provide a good fit as a reference distribution. The empirical distribution of 

the daily returns exhibits significantly heavier tails than the reference 

distribution which implies that another choice of parametric family should 

be considered. it can be concluded that the data is not normally distributed 

and a fat tailed distribution should be considered for all series. 

 

 The Jarque-Bera test 

The Jarque-Bera test determines if a sample has an excess kurtosis and a 

skewness equal to zero or not, i.e. whether the sample is normally 

distributed or not. The test static is: 

    
 

 
*   

(   ) 

 
+  (4) 
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Where n is the number of observations, S is the skewness and K is the 

kurtosis. The excess kurtosis is defined as the term EK = K − 3, since the 

normal distribution has a kurtosis equal to three. A distribution with thick 

tails has a positive excess kurtosis, in other words it has a higher peak. In 

that case, it is said to be leptokurtic. The sample kurtosis is calculated as: 

   
 

 
 
∑ (    ̅)

  
   

( ̂ )
   (5) 

And the sample skewness is expressed as: 
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Where  ̂
  is defined as: 

  ̂
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 (7) 

Given this, the hypotheses of the Jarque-Bera test are: 

              

                 

The null hypothesis is that the distribution is normal, and if it is false that 

indicates a non-normal distribution. Any deviation from the relationship 

stated in the null hypothesis increases the JB-statistic. The Jarque-Bera test 

static JB can be compared with a chi-square distribution with two degrees 

of freedom, and is rejected if the observed value exceeds the critical value 

given by the distribution of    with two degrees of freedom. For an   = 0. 

05 the critical value equal 5.99.  The Jarque-Bera test of normality 

compares the sample skewness and kurtosis to 0 and 3, their values under 

normality. The null hypothesis states that distribution of the series is 

symmetric and mesokurtic, which implies that a rejection is in place if the 

residuals from the model is skewed or leptokurtic 

Table 2 Jarque-Bera test of normality 

Jarque-Bera EGX 30 

X-squared 1266.68 

 

where df = 2 , p-value < 2.2e-16 the null hypothesis of a Gaussian 

distribution is rejected. 
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Step 3: Testing for Autocorrelation  

Through ACF plot of return  and squared returns and by using Ljung-Box 

test. First, The Sample Autocorrelation function is a very useful tool and 

can be used for checking for serial correlation in the return data. the 

autocorrelation function (ACF) of the log returns addresses the issue of 

uncorrelatedness. Second, the dependency in the conditional variance of the 

process can be captured by showing the ACF of the squared log returns. In 

particular, whenever volatility clusters do exist, the squared log returns will 

show autocorrelation. The left upper plot in the following plots shows the 

Sample Autocorrelation Function for the daily returns of lags 0 to 30. 

Based on inspection of the Sample Autocorrelation Function plot it is not 

completely clear whether the data is serially correlated or not, even though 

it has minor significant serial correlation at few lags. The right upper plot 

of the following plots shows the Sample Autocorrelation Function for the 

daily squared returns. The lower right plot in the following plots shows the 

Sample Partial Autocorrelation Function which shows clearly significant 

autocorrelation and thus confirms that the squared returns are serially 

correlated 

  

  
Figure 4 Autocorrelation and partial Autocorrelation of EGX30 log returns and squared 

log returns 
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 The Ljung-Box test 

 The Ljung-Box test determines the degree of autocorrelation for a given 

lag length. The hypotheses are: 

        
 
      

 
  

                          

The test function has the following form: 

    (   )∑
 ̂
 
 

   

 

   

 (8) 

Where n is the sample size, h the number of lags and k the lag length at a 

certain point in the summation. the results from this test are presented, 

studied at various lag lengths. 

the Ljung-Box Q-test null hypothesis that all autocorrelations up to the 

tested lags are zero is rejected for lags 5, 10 and 15 at a 5% significance 

level. 

Table 3 Ljung-Box Test Results 

Ljung-Box X-squared p-value 

EGX 30 53.239 6.722e-08 

 

The p value is low. Therefore we can reject the null hypothesis (no serial 

correlation) and say that there is serial correlation in the log returns 
 

Step 4: Testing for Significance of Expected Log-Return 

 T test is used to find the expected log-return and to test if the mean return 

is zero with a t-test. for the t-test the Null is Mean Equals Zero while the 

alternative hypothesis states that the true mean is not equal to 0 

 

Table 4 t-test  for significance of expected log-return 

INDEX t-value p-value 

EGX 30 2.3217 0.05041 

 

The results give a high p value. so the null cannot be rejected at 95% 

confidence level. Therefore the expected log-return is not significantly 

different from zero.  

Step 5: Testing for Significance of Squared Log-Return 

Test if the mean squared return is zero with a t-test. The results give a low 

p value so we can conclude that squared returns are statistically 
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significantly different from zero, hence we need to model the variance 

equation using an ARCH or GARCH model. 
 

Table 5 t-test  for significance of squared log-return 

INDEX t-value p-value 

EGX 30 13.776 2.20E-16 

 

Step 6: Testing for Arch Effect 

The ARCH-LM test investigates whether the proposed data contain any 

variation in the conditional volatilities. It determines whether the GARCH-

model is suitable. LM is an abbreviation for Lagrange Multiplier.  

 This is determined through regressing the squared returns   
  : 

   
     (∑        

  
   )      (9) 

Given that          . The ARCH-LM test has the null hypothesis of 

whether all the coefficients in the previous regression are zero, there are no 

ARCH-effects.  

The hypotheses are:  

                             

                          

The null hypothesis states that there is homoscedasticity in the variance. In 

other words, there is no volatility clustering in the series.  

The term T denotes the sample size. LM is     distributed. A desired 

outcome is a significant statistic, indicating that there is a significant 

ARCH-effect in the log return. It is clear from  Table  that shows LM test 

result that all returns have highly significant p-values which shows that 

there is ARCH effect present in the data. 

 

Table 6 ARCH-LM Test Results 

INDEX Chi-squared p-value 

EGX 30 70.497 2.59E-10 

 

Step 7: Determining the Order of GARCH (p,q) 

An essential task in modeling volatility using GARCH models is the 

determination of the ARCH order p and GARCH order (p,q) for a 

particular series. Considering GARCH models is similarly done as ARMA 

models using residuals and classical model selection criteria such as the 
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Akaike information criterion (AIC) and the Schwartz-Bayesian information 

criterion (BIC) can be employed for choosing models. The R software 

package is employed to compute the AIC to determine best fitting model. 

Generally, GARCH models with p, q ≤ 2 are typically selected by AIC and 

BIC. In the Error! Reference source not found. below smaller AIC is an 

indication of an appropriate model. Therefore, since GARCH (1, 1) has the 

smallest AIC among the contesting models we consider it as the 

appropriate model. GARCH orders and parameters are selected based on 

AIC  for an initial GARCH fit. 

To investigate this, ARCH(q) and GARCH(p,q) models were fitted where p 

were allowed to vary from 0 to 4 while q were allowed to vary from 0 to 5 . 

The orders for p and q were selected based on the lowest AIC value. Error! 

Reference source not found.Table 7 shows that For EGX 30 the 

GARCH(1,1) model was found to be the best.  

Table 7 Determining the order of GARCH (p,q) 

GARCH ORDER EGX30 

p q aic 

0 0 -6548.72 

0 1 -6566.82 

0 2 -6590.03 

0 3 -6603.2 

0 4 -6650.74 

0 5 -6644.97 

1 0 -6548.72 

1 1 -8504.17 

1 2 -6648.56 

1 3 -6642.82 

1 4 -6653.19 

1 5 -6641.05 

2 0 -6548.72 

2 1 -6650.3 

2 2 -6651.8 

2 3 -6640.41 

2 4 -6648.97 

2 5 -6640.54 

3 0 -6548.72 

3 1 -6650.3 

3 2 -6651.8 

3 3 -6640.41 

3 4 -6648.97 

3 5 -6640.54 
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4 0 -6548.72 

4 1 -6650.3 

4 2 -6651.8 

4 3 -6640.41 

4 4 -6648.97 

4 5 -6640.54 

 

Estimation of the GARCH (1, 1) Model  

A non-robust estimator; quasi-maximum likelihood (QMLE) estimator with 

four different fat tailed distributions is used in this study. When fitting a 

GARCH-model based on financial data the conditional distribution of the 

returns has to be defined. Earlier, in table 1 the skewness and kurtosis of 

the studied stocks are presented, and the results show that all of the stocks 

kurtosis exceeds the normal distributions kurtosis of three. Studies illustrate 

that returns are not normally distributed. Instead, the Student-t distribution 

or the Generalized Error distribution captures the observed kurtosis in 

empirical returns in a more sufficient way than the normal distribution. 

Judging by the results of the skewness of the stocks in Table 1, the return 

seems to be skewed. Due to this, the estimation procedure of this study uses 

the Student-t distribution and the Generalized Error distribution and there 

skewed versions in the estimation with QMLE. 
  

Evaluation of In-Sample Fit 

In this study four criteria will be used, the Akaike (AIC), Bayesian (BIC), 

Hannan-Quinn (HQIC) and Shibata (SIC) information criteria to enable 

model selection.  

When comparing the in-sample fit of different models using the 

information criteria tests the smaller value of the criterion the better. A 

model with a smaller t test criteria provides the best in-sample fit  

The criteria is given by: 
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(10) 
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In table 8 the information criteria results are summarized. From the table, it 

can be seen that GARCH models with the skewed student -t  distribution 

perform very well and therefore recommended for financial time series in 

QMLE estimation  in case of EGX30  

Table 8 Information Criteria For GARCH(1,1) 

DIST 

INFO 

QMLE 

std 

QMLE 

GED 

QMLE 

sstd 

QMLE 

sGED 

Akaike -26.5418 -26.2912 -24.0777 -25.6108 

Bayes -26.5586 -26.308 -24.0987 -25.6318 

Shibata -26.5418 -26.2912 -24.0777 -25.6107 

Hannan-Quinn -26.5482 -26.2975 -24.0856 -25.6187 

 

Forecasting with the GARCH (1,1) Model 

Let T to be the forecast origin. Then the single−step ahead forecast for     
  

is 

   
 ( )   ̂   ̂  

   ̂  
  (11) 

Since    
    

   
   the GARCH (1, 1) model can be re-written as 

 

   
 ( )         

       
  (12) 

   
 ( )    (   )    

       
 (    

   ) (13) 

so that at time T + 2, we have 

     
    (   )    

       
 (    

   ) (14) 

with  ((    
   )|  )    . Therefore the 2 − step ahead forecast is 

   
 ( )   ̂  ( ̂   ̂)  

 ( ) (15) 

In general, the   − step ahead forecast for     
  is  

   
 ( )   ̂  ( ̂   ̂)  

 (   ) (16) 

 for     . 

 By repeated substitution of (  
 ( )) the   − step ahead forecast for GARCH 

(1, 1) can be expressed as 

   
 ( )   ̂  ( ̂   ̂)

   
(  
 ( )   ̂ ) (17) 

 for    ,where 

 
 ̂  

 ̂

   ̂   ̂
 

 

(18) 
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The expression shows that   
 ( )   ̂

         , provided that ( ̂   ̂)   

  so as the forecast horizon goes to infinity, the variance forecast 

approaches the unconditional variance of The multi-step ahead forecast of a 

GARCH (1, 1) model converges to the unconditional variance of     as the 

forecast horizon goes to infinity provided that the variance of    exists 

[Tsay, 2010]. It is often useful not only to forecast next period’s variance of 

returns, but also to make an l-step ahead forecast, especially if our goal is 

to price an option with l steps to expiration using our volatility model. 
 

Evaluating the Forecasts 

The evaluation of volatility forecasts raises the problem that the variable of 

interest is latent and cannot be directly compared with the true variance for 

that certain period. The reason is that the instantaneous volatility cannot be 

observed (Andersen, et al., 1998). This problem can be solved by replacing 

the latent conditional variance by a proxy for the true volatility. 

In GARCH model the conditional variance is the object of study and the 

variance is considered completely time varying and thus should be able to 

take different values at each time point. If only daily closing prices are 

available the only volatility proxy that fully emphasizes the time 24 varying 

property is the daily squared returns. The daily squared returns have been 

used as the proxy for the unobserved variance , (Cumby, et al., 1993), 

(Figlewski, 1997). 

Squared returns are however an extremely noisy proxy of the latent realized 

variance and The use of daily squared returns as a proxy led to very poor 

out-of-sample performance in spite of highly significant in-sample fitting, 

see (Andersen, et al., 1998). This led to the conclusion that the volatility 

models explained very little of the time variability of the volatility and thus 

had limited practical value. 

However (Andersen, et al., 1998)  showed that GARCH type volatility 

provides accurate volatility forecasts when the out of sample forecasting 

performance was evaluated with a more suited proxy. The proposed proxy 

was to estimate the daily volatility using cumulative squared intra-day 

returns. The intra-day returns are used as a proxy for the volatility in the 

following manner. Assume there are m equally spaced observations per 

trade day and denote the ith intra-day return during day t by       . The 

cumulative squared intra-day returns are then computed as 
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  ̂      
  ∑      

 

 

   

 (19) 

If m=1 the cumulative squared intra-day return proxy is equal to the daily 

squared return proxy. With m=1 the proxy is unbiased but very noisy. As 

      ̂      
  

 
   

  where   
  denotes the true latent volatility. However, 

using the cumulative squared intra-day returns as a proxy for the realized 

daily volatility requires high frequency data which in many cases aren’t 

available.  

Reliable open and close prices and intraday high and low prices are often 

available for most financial assets over long time horizons. There are 

volatility proxies that use such data instead of the high frequency data to 

estimate the volatility. In this empirical study only daily data was available 

resulting in that another proxy than the cumulative squared intra-day return 

proxy had to be used. A simplified proxy will be used, first introduced by 

Parkinson (1980) usually referred to as the High-Low range proxy. The 

high low range at day t denoted     is defined as 

        
 
(   (  ))     

 
(   (  )) (20) 

where    is the price level at time 𝜏 during the day. The log range is thus 

the difference of the logarithm of the highest price level during the given 

day and the logarithm of the lowest price during the same day. This range 

contains more information than the simple daily return based on the closing 

price since it incorporates how the price has fluctuated throughout the day. 

For example, on a day when the price fluctuates substantially during the 

day but the closing price still is close to the opening price, the daily return 

would suggest a day of low volatility while the log range would reflect the 

intraday price movements and thus imply correctly that the volatility was 

high. Assuming a geometric Brownian motion with zero drift and with a 

constant volatility   the expected value of the squared log range is directly 

related to the volatility of the process by the following expression  

     [   
 ]       ( )    

  (21) 

Hence, the Parkinson estimator for the volatility denoted   ̂   
 

 is defined by  

 
 ̂   
  

[   (  )     (  )]
 

      ( )
 

 

(22) 
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where   ,    denote the daily high and low price respectively. An extension 

to Parkinson’s volatility estimator was provided by Garman and Klass 

(1980) which in addition to the daily high and low prices also utilized the 

information in the opening and closing prices. The estimator is defined as  

  ̂    
         (

  
  
)
 

 (     ( )   )     (
  
  
)
 

 (23) 

where   ,    denote the daily high and low price respectively and   ,    

denote the closing and opening price respectively. Under idealized 

conditions the Garman-Klass volatility estimator is a less noisy proxy than 

the Parkinson estimator. However empirical studies have shown that the 

Parkinson’s estimator performs well with real data, see Chou et al. (2010) 

and Alizadeh, Brandt and Diebold (2002). In addition the Parkinson’s 

estimator appears to be very robust to market microstructure effects, see 

Brandt and Diebold (2006). For these reasons the Parkinson’s estimator 

will be used as the proxy for the volatility in this study. 
 

 GARCH(1,1) Forecast Evaluation 

With the volatility proxy,  ̂   
 

 , and the 1 day ahead volatility 

forecasts,     
 ( ) computed for each of the days in the out-of-sample 

period it is important to evaluate the performance of the respective 

volatility models which The preferences are usually expressed through a 

loss function. 

The following loss functions will be used in the models out-of-sample 

forecast performance evaluation 

        ∑ ( ̂   
      

 ( ))
 

 
     (24) 

          ∑ (   (    
 ( ))   ̂   

     
  ( )) 

     (25) 

          ∑ *   ( ̂   
      

  ( ))+
 

 
     (26) 

        ∑ | ̂        ( )|
 
     (27) 

        ∑ ( ̂   
      

 ( ))
  

       
  ( )  (28) 

where n is the number of days in the out-of-sample period,  ̂   
 

 is the 

volatility proxy at day t and     
 ( ) is the one day ahead volatility forecast 

at time t-1.  
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Table 9 loss functions results for GARCH(1,1) forecast evaluation 

DIST 

INFO 

QMLE 

std 

QMLE 

GED 

QMLE 

sstd 

QMLE 

sGED 

MSE 7.05E-10 6.05E-10 1.47E-09 7.33E-10 

MAD 2.57E-06 2.38E-06 3.71E-06 2.62E-06 

R2LOG 0.067456 0.06393 0.086047 0.068358 

PSE 0.008116 0.008029 0.008468 0.008137 

Q-LIKE -0.07534 -0.07596 -0.07228 -0.07518 

 

Conclusion and Recommendations 

The QMLE method is non-robust to the presence of outliers even with fat-

tailed and skewed distributions. 

Stock market data comes along with some skewness, tail weights, outliers 

and unknown distributions that violates some underlying assumptions for 

which the estimates from QMLE is efficient. Since QMLE estimates is 

sensitive to outliers, then QMLE estimation for the GARCH coefficient 

will be biased and not efficient. Such evidence provides a clear motivation 

for exploring the use of a more robust method for estimation of GARCH 

coefficients. 
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